

Protein-stabilised emulsions

Ranjan Sharma

Emulsion - definition

- An emulsion consists of two immiscible liquids (generally oil and water) with one liquid forming the continueous phase while the other the dispersed phase.
 - Oil-in-water (O/W)
 - Water-in-oil (W/O)
 - Water-in-oil-in-water (double emulsion, W/O/W)
 - Oil-in-water-in-oil (double emulsion, O/W/O)

Examples

- O/W milk, cream, mayonnaise, soups and sauces
- W/O butter and margarine

Oil-in-water emulsions

O/W - Chocolate milk and infant formulae

O/W - Complete nutritional formula ozScientific

OzScientific

O/W - Mayonnaise

OzScientific

W/O – butter and margarine

Two & three-phase emulsions

Emulsion formation

Emulsion formation

Sequence of events

- During homogenisation, fat globules with sub-micron size are formed
- Milk proteins migrate to the newly formed fat globule surfaces
- Capability to form a stable emulsion is determined by the ability of the protein to unfold at the fat-water interface
- Protein load affects the stability of emulsion towards heating and storage

Setup for reconstitution of protein ingredient

Homogenising devices

- High-speed blender
- Colloid mills
- High-pressure valve homogeniser
- Ultrasonic homogeniser
- Microfludiser
- Membrane-based homogeniser

Homogenising devices

- High-speed blender
- Colloid mills
- High-pressure valve homogeniser
- Ultrasonic homogeniser
- Microfludiser
- Membrane-based homogeniser

Homogenisation efficiency

$$E_{H} = \frac{\Delta E_{min}}{\Delta E_{total}} \times 100$$

E_H – homogenisation efficiency

 ΔE_{min} – Minimum amount of energy theoretically required to form emulsion = $\Delta A \gamma$ (interfacial area and interfacial tension) ΔE_{total} – Actual amount of energy expended during homogenisation

• zScientific

Homogenising valve

• zScientific

Two-stage homogeniser

Effect of homogenisation on fat globules in milk

Natural milk

Homogenized milk

Casein micelles and whey proteins at oil-water interface

TEM of an oil-water emulsion

Particle size distribution – A stable emulsion

Particle size distribution – unstable emulsion ozscientific

Protein adsorption

PHYSICO-CHEMICAL PROPERTIES OF ML Scientific PROTEINS

CASEIN

WHEY PROTEIN

- Strong hydrophobic regions
- Low cysteine
- High ester phosphates
- Little or no secondary structure
- Unstable in acidic conditions
- Micelles in native form
- Random coil in dissociated form

- Balance in hydrophobic and hydrophilic residues
- Contains cysteine and cystine
- •Globular, much helical
- No ester phosphate
- Easily heat denatured
- Stable in mild acidic conditions
- Present as soluble aggregates (<10 nm)

Selective Chemical Composition and Physico-Chemical Composition an

Attribute	Milk protein concentrate	Sodium caseinate	Whey protein concentrate
Moisture (%)	4.0	4.0	4.0
Total protein (N*6	5.38, %) 82.5	92	83.5
Casein (%)	66.0	92.0	0
Whey protein (%)	16.5	0	83.5
Calcium (%)	2.20	0.01	0.06
Potassium (%)	0.01	0.005	0.05
Phosphorus (%)	1.40	0.80	0.18
Protein state	Casein micelles, Soluble aggregates Soluble whey		
	soluble whey prot	ein of casein	proteins

Kinetics of protein adsorption

Diffusion-controlled (Ward & Tordai, 1946)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}t} = C_0 (D/\Pi t)^{1/2}$$

 Γ – surface protein concentration, t – time

D – diffusion coefficient

Kinetics of protein adsorption

Diffusion-controlled (Ward & Tordai, 1946)

Total adsorbed protein

$$\Gamma = 2C_0(Dt/\Pi)^{1/2}$$

Kinetics of protein adsorption

Convection-controlled (Walstra, 1983)

$$\Gamma(t) = KC_0 d (1+d_p/d_g)^3$$
g t

 C_0 is the bulk protein concentration, d_g and d_p are the fat-globule and protein-particle sizes, respectively, and K is a constant

Protein load

$$\Gamma = \frac{\text{Protein at the oil droplet surface (mg)}}{\text{Total droplet surface area (m}^2)}$$

Protein load at oil-water interface

Protein	Protein load (mg/m²)	
α_s -Casein	3-4.2	
β-Casein	1-1.75	
κ-Casein	4.2	
Casein micelle	20	
Sodium caseinate	2.2-2.6	
Skim milk powder	10-23	
β-Lactoglobulin	1.7	

Factors affecting protein load

- Volume of oil
- Protein concentration
- Homogenisation temperature
- Homogenisation pressure
- Aggregation state of protein
- Pre-treatment of protein, i.e. Hydrolysis or crosslinking

Types of protein adsorption

- Reversible and irreversible adsorption
- Competitive adsorption

Basic emulsion characteristics

- Thermodynamically unstable
- Possible to make kinetically stable

Colloidal interactions

- Van der Waals Interactions
- Electrostatic interactions
- Polymeric steric interactions
- Depletion interactions
- Hydrophobic interactions
- Hydration intrations
- Thermal fluctuation interactions
- Total interaction potential

• zScientific

van der Waals interactions

Electrostatic double-layer forces

Polymeric steric interactions

Surfactant Flexible polymer Globular polymer

• zScientific

Depletion interactions

• zScientific

Hydrophobic interactions

Other interactions

- Hydration interactions
- Thermal fluctuation interaction
- Bridging flocculation
- Hydrodynamic interactions

DLVO Theory for colloidal stability zScientific

Colloidal forces important for emulsion stability

Type of force	Character	Origin	Influenced by
van der Waals	Attraction	Permanent & fluctuating dipoles	Refractive index Dielectric constant
Electrostatic	Repulsion	Surface charge	Ionic strength, pH
Steric	Repulsion	Adsorbed polymers	Polymer coverage & solubility
Bridging	Attraction	Adsorbed polymers	Polymer coverage
Depletion	Attraction	Non-adsorbed polymers Micelles	Molecular weight Polymer polydispersity
Polyelectrolyt es	Repulsion or attraction	Adsorbed polyelectrolytes	Ionic strength, polyelectrolyte coverage

Colloidal forces important for emulsion stability zScientific

Type of force	Character	Origin	Influenced by
Hydrophobic	Attraction	Water-water affinity	Solvent properties, surface hydrophobicity
Hydration	Repulsion	Dehydration of polar group	Emulsifier head group, crystallinity
Protrusion	Repulsion	Reduction in movement of emulsifiers normal to the interface	Fluidity of the layer, head-group size, Oil/water interfacial tension

Bergenstahl A & Claesson PM (1997) Surface forces in emulsion. In Food Emulsions (Friberg S & Larsson K, eds), pp 57-109, Marcel Dekker, NY

Structural organisation of molecules in liquids

- Thermodynamics of mixing
- Potential energy change on mixing
- Entropy change on mixing
- Free energy change on mixing

Structural organisation of molecules in liquids

Thermodynamics of mixing

Immiscible liquid

Miscible liquid

Overall interactions

Overall interaction

- Attractive interactions dominate at all separations
- Repulsive interactions dominate at all separations
- Attractive interactions dominate at larger separations, but repulsive interactions dominate at short separations
- Repulsive interactions dominate at large separations, but attractive interactions dominate at short separation

Inter-particle pair potential

Energy required to bring two emulsion droplets from an infinite distance apart

$$w(h) = w_{attractive}(h) + w_{repulsive}(h)$$

Inter-particle pair potential

• Energy required to bring two emulsion droplets from an infinite distance apart to a surface-to-surface separation of 'h'

Attractive interactions dominate at all separations

Repulsive interactions dominate at all separations

Attractive interactions dominate at large separations Scientific but repulsive interactions dominate at short separations

Repulsive interactions dominate at large separations Scientific but attractive interactions dominate at short separations

Characterisation of emulsions

- Emulsifying properties of proteins
 - Emulsifying activity
 - Emulsion capacity
 - Surface hydrophobicity
- Emulsion stability
 - Emulsion droplet size
 - Protein load
 - Creaming and oil separation
 - Heat stability
- Emulsion rheology
- Emulsion microstructure

Recommeded reading

- Food Emulsions: Principles, practice and techniques by D.J. McClements, CRC Press, Boca Raton, USA, 1999
- Food Emulsions edited by Friberg, S.E. And Larsson, L, Marvel Dekker, Inc, New York, 1997
- Emulsions and Emulsion stability, edited by Sjöblom, J, Marvel Dekker, Inc, New York, 1996